Что такое импульсный блок питания и где применяется

Достоинства такой схемы

Такая логическая схема используется уже более десятилетия, что лишний раз подтверждает ее высокую эффективность. К неоспоримым достоинствам следует отнести:

  • Относительная простота конструкции снижает количество необходимых компонентов, что позволяет снизить себестоимость устройства. Также это упрощает ремонт, в случае его необходимости.
  • На выходе получается требуемый диапазон номинальных напряжений, с приемлемым качеством стабилизации, что требуется для нормальной работы комплектующих в составе системного блока.
  • Так как основные потери энергии приходятся на процессы преобразования, можно достичь высокого КПД такого блока питания, вплоть до 90%.
  • Небольшие габариты и масса, что позволяет собирать более компактные системные блоки.
  • При внесении соответствующих конструкционных корректировок, такие БП можно использовать в сетях с широким диапазоном напряжения – например, 115 В в США или 220 В на постсоветском пространстве.

Задачи вторичного источника электропитания

  • Обеспечение передачи мощности — источник электропитания должен обеспечивать передачу заданной мощности с наименьшими потерями и соблюдением заданных характеристик на выходе без вреда для себя. Обычно мощность источника питания берут с некоторым запасом.
  • Преобразование формы напряжения — преобразование переменного напряжения в постоянное, и наоборот, а также преобразование частоты, формирование импульсов напряжения и т. д. Чаще всего необходимо преобразование переменного напряжения промышленной частоты в постоянное.
  • Преобразование величины напряжения — как повышение, так и понижение. Нередко необходим набор из нескольких напряжений различной величины, для питания различных цепей.
  • Стабилизация — напряжение, ток и другие параметры на выходе источника питания должны лежать в определённых пределах, в зависимости от его назначения при влиянии большого количества дестабилизирующих факторов: изменения напряжения на входе, тока нагрузки и так далее. Чаще всего необходима стабилизация напряжения на нагрузке, однако иногда (например, для зарядки аккумуляторов) необходима стабилизация тока.
  • Защита — напряжение, или ток нагрузки в случае неисправности (например, короткого замыкания) каких-либо цепей может превысить допустимые пределы и вывести электроприбор, или сам источник питания из строя. Также во многих случаях требуется защита от прохождения тока по неправильному пути: например прохождения тока через землю при прикосновении человека или постороннего предмета к токоведущим частям.
  • Гальваническая развязка цепей — одна из мер защиты от протекания тока по неверному пути.
  • Регулировка — в процессе эксплуатации может потребоваться изменение каких-либо параметров для обеспечения правильной работы электроприбора.
  • Управление — может включать регулировку, включение/отключение каких-либо цепей, или источника питания в целом. Может быть как непосредственным (с помощью органов управления на корпусе устройства), так и дистанционным, а также программным (обеспечение включения/выключения, регулировка в заданное время или с наступлением каких-либо событий).
  • Контроль — отображение параметров на входе и на выходе источника питания, включения/выключения цепей, срабатывания защит. Также может быть непосредственным или дистанционным.

Чаще всего перед вторичными источниками питания стоит задача преобразования электроэнергии из сети переменного тока промышленной частоты (например, в России — 240 В 50 Гц, в США — 120 В 60 Гц).

Две наиболее типичных конструкции — это трансформаторные и импульсные источники питания.

Достоинства такой схемы

Такая логическая схема используется уже более десятилетия, что лишний раз подтверждает ее высокую эффективность. К неоспоримым достоинствам следует отнести:

  • Относительная простота конструкции снижает количество необходимых компонентов, что позволяет снизить себестоимость устройства. Также это упрощает ремонт, в случае его необходимости.
  • На выходе получается требуемый диапазон номинальных напряжений, с приемлемым качеством стабилизации, что требуется для нормальной работы комплектующих в составе системного блока.
  • Так как основные потери энергии приходятся на процессы преобразования, можно достичь высокого КПД такого блока питания, вплоть до 90%.
  • Небольшие габариты и масса, что позволяет собирать более компактные системные блоки.
  • При внесении соответствующих конструкционных корректировок, такие БП можно использовать в сетях с широким диапазоном напряжения – например, 115 В в США или 220 В на постсоветском пространстве.

Разъемы и провода блока питания

Вот тут и начинается самый «хардкор», потому что у блоков питания бывают разные комплекты проводов, равно как и у комплектующих бывают различные разъемы. А что, если на БП не найдется нужного провода?.. В процессе выбора этот вопрос будет мучить любого неопытного пользователя. И вот тут у нас для вас есть две новости — хорошая и плохая. Начнем с плохой: чтобы грамотно выбрать блок питания, вам будет полезно узнать, какие бывают провода и разъемы.

Вот наглядный коллаж с фотографиями шести основных разъемов, которые используются в современных компьютерах. Далее по порядку рассмотрим назначение каждого из них:

  • Кабель питания диска SATA: используется с жесткими (HDD) и твердотельными (SSD) накопителями;
  • Кабель питания ЦПУ: обеспечивает питанием процессор, разъем для этого кабеля есть на каждой материнской плате, при этом он может быть и 8-штырьковым, но это встречается редко.
  • Кабель питания материнской платы: как уже упоминалось выше, предназначен для запитывания «материнки»;
  • Кабель питания флоппи-привода: раньше такой кабель использовался для подачи энергии на отсек для дискет;
  • Кабель питания PCI-Express: предназначен для обеспечением электроэнергией видеокарт и вообще любых карт расширения PCI-e, также стоит отметить, что чаще всего он структуру 6+2 pin или 4+4 pin, а еще их может понадобиться сразу две штуки, если у видеокарты высокое энергопотребление
  • Кабель питания периферии (он же Molex): когда-то он запитывал жесткие диске IDE-типа, а также CD/DVD-приводы, но сейчас используется разве что для подключения регулярно вращения вентиляторов или какой-нибудь выносной панели на корпусе.

Кстати, если кабель питания ЦПУ на БП 4-штырьковый, а разъем на материнской планете 6- или 8-штырьковый, то ничего страшного. Ставьте свой 4-pin, его вполне хватит, если вы не собираетесь практиковать экстремальный разгон.

А теперь, пока вы укладываете в голове все эти знания, поделимся с вами хорошей новостью: компоновка проводов на всех современных блоках питания примерно одинаковая. В этом плане разница между современными БП разве что в количестве проводов разного типа. Таким образом, вам не нужно маниакально записывать все разъемы на своих комплектующих, если только вы не собираете какой-то странный агрегат вместо игрового компьютера.

Кабели для дисков всегда идут с несколькими коннекторами, обычно по три на каждыйКабели для дисков всегда идут с несколькими коннекторами, обычно по три на каждый

Кстати, на рынке также можно найти модульные блоки питания со съемными кабелями. Они позволяют пользователю самостоятельно распределить мощность, что довольно удобно, если вы любите все тонко настраивать под себя. Но такие БП стоят дороже, да и к тому же придется вручную их присоединять, а также искать дополнительные провода, если у компьютера нестандартный набор комплектующих. Например, три видеокарты или очень много жестких дисков.

К тому же блоки питания со съемными кабелями, как правило, менее надежные. Из-за наличия дополнительного звена в виде разъема для подключения кабеля возникает избыточный нагрев. Это в общем-то не страшно, но и хорошего в этом ничего нет.

Принцип работы импульсного (инверторного) блока питания

А теперь рассмотрим, как работает импульсный блок питания, на полупрофессиональном уровне.

Основной функционал устройства заключается в выпрямлении характеристик первичного напряжения с последующим преобразованием в непрерывную последовательность импульсов, следующих с частотой, существенно превышающую номинальные 50 Гц. Именно в этом и заключается основное отличие от БП трансформаторного типа. У инверторных устройств выходное напряжение прямо влияет на функционирование блока посредством обратной связи. Используя характеристики импульсов, можно более точно регулировать стабилизацию выходного напряжения, тока и других параметров. Фактически импульсный блок питания может использоваться в качестве стабилизатора и напряжения, и тока. При этом полярность и число выходных характеристик может варьироваться в широких пределах, в зависимости от конкретной конструкции ИБП.

Опишем принцип действия импульсного БП схематично.

На первый блок устройства, выпрямитель, подаётся бытовое напряжение номиналом 220 В, на трансформаторе амплитуда напряжения сглаживается, за что отвечает фильтр на основе конденсатора ёмкостного типа. Следующий этап – выпрямление синусоидного сигнала посредством диодного моста. После этого синусоидное напряжение преобразовывается в высокочастотные импульсы, при этом может быть использован принцип гальванического отделения питающего напряжения от выходного.

Если такая гальваническая развязка присутствует, высокочастотные сигналы по принципу обратной связи снова направляются на трансформатор, который использует их для осуществления гальванической развязки. Чтобы повысить КПД трансформатора, используется такой приём, как повышение его рабочей частоты.

Инверторный принцип обратной связи реализован посредством взаимодействия 3 базовых цепочек:

  • за широтно-импульсную модуляцию входного напряжения отвечает ШИМ-контроллер;
  • второй элемент – каскад силовых ключей, включающий собранные по специальным схемам транзисторы (схема со средней точкой Push-Pull, мостовая или полумостовая);
  • третья цепочка – собственно импульсный трансформатор.

Какие разновидности ставят в ПК

Все компьютерные блоки питания строятся в соответствии со стандартом ATX. Предыдущий стандарт AT отжил свое еще в 90-е годы прошлого столетия. Основное отличие устройства импульсного блока питания компьютера ATX – наличие дежурного напряжения, которое позволяет включить компьютер без коммутации силовых цепей БП.

Строение импульсных источников питания (ИИП), описание схемотехнических решений будет дано ниже, а чтобы изначально сориентироваться в разновидностях БП, надо знать общие принципы классификации устройств.

В первую очередь ИИП для компьютеров делят по мощности, причем параллельно с развитием ПК этот параметр постоянно растет. Если 20 лет назад блока питания мощностью в 250 ватт было достаточно, чтобы закрыть любые потребности, то на текущий момент не всегда достаточно и 550 ватт.

Также многие обращают внимание на наличие сертификата 80PLUS, означающего повышенный КПД блока питания

С технической точки зрения это важно, но с экономической надо понимать, что разница в стоимости компенсирует выигрыш в электроэнергии не раньше, чем за несколько десятков лет. Хотя имеется еще один момент – БП, сертифицированные по высшим категориям 80+ (Gold, Titanium и т.п.), не имеют вентилятора, а это означает практическую бесшумность в работе

Обратной стороной медали является то, что безвентиляторные БП часто выполняются с внешним радиатором, который выступает за габариты корпуса ПК. Это может привести к проблемам с установкой компьютера

Хотя имеется еще один момент – БП, сертифицированные по высшим категориям 80+ (Gold, Titanium и т.п.), не имеют вентилятора, а это означает практическую бесшумность в работе. Обратной стороной медали является то, что безвентиляторные БП часто выполняются с внешним радиатором, который выступает за габариты корпуса ПК. Это может привести к проблемам с установкой компьютера.

Какой форм-фактор выбрать?

Несмотря на то, что у каждого блока питания имеется целый букет различных характеристик и особенностей, первым делом нужно всегда смотреть на размер. Ведь если «железка» физически не поместится в корпус, то она будет бесполезна вне зависимости от того, какая у нее мощность, верно? Так что форм-фактор — это отправная точка поиска. В зависимости от размера блоки питания делятся на три основные категории: ATX, SFX и TFX.

Блоки питания по порядку: ATX, SFX, TFX и FlexATXБлоки питания по порядку: ATX, SFX, TFX и FlexATX

Разумеется, есть и другие типы. Например, иногда вам может понадобиться блок питания в формате ITX или FlexATX, но это скорее исключение из правил. Если у вас стандартный корпус типа (от Mini-Tower до Full-Tower), то вам с вероятностью 99% нужен блок питания ATX. Если не уверены, то обязательно спросите у продавца насчет форм-фактора совместимых БП. Эту информацию также всегда пишут в списке характеристик любого корпуса, так что найти ее не составит труда.

Зачем же тогда нужны SFX и TFX? Ответ прост: эти форм-факторы предназначены для компактных или нестандартных корпусов. Такие обычно используются для мультимедийных компьютеров или серверов. При этом SFX по форме ближе к квадрату, нежели ATX, а TFX, напротив, имеет более вытянутый корпус. На всякий случай вот вам стандартные габариты блока питания ATX — 150x86x140 мм, если в описании не указан форм-фактор.

Защита от подачи пониженного и повышенного напряжения (UVP/OVP)

Защита в обоих случаях реализована при помощи одной и той же схемы, мониторящей выходные напряжения +12В, +5В и 3.3В и отключающей БП в случае если одно из них окажется выше (OVP — Over Voltage Protection) или ниже (UVP — Under Voltage Protection) определённого значения, которое также называют «точкой срабатывания». Это основные типы защиты, которые в настоящее время присутствуют фактически во всех блоках питания, более того, стандарт ATX12V требует наличия OVP.

Некоторую проблему составляет то, что и OVP, и UVP обычно сконфигурированы так, что точки срабатывания находятся слишком далеко от номинального значения напряжения и в случае с OVP это является прямым соответствием стандарту ATX12V:

Т.е. можно сделать БП с точкой срабатывания OVP по +12В на 15.6В, или +5В на 7В и он всё ещё будет совместим со стандартом ATX12V.

Такой блок питания будет длительное время выдавать , допустим, 15В вместо 12В без срабатывания защиты, что может привести к выходу из строя компонентов ПК.

С другой стороны, стандарт ATX12V чётко оговаривает, что выходные напряжения не должны отклоняться более чем на 5% от номинального значения, но при этом OVP может быть конфигурирована производителем БП на срабатывание при отклонении в 30% по линиям +12В и +3.3В и в 40% — по линии +5В.

Производители выбирают значения точек срабатывания используя ту или иную микросхему мониторинга или ШИМ-контроллера, потому что значения этих точек жёстко заданы спецификациями той или иной конкретной микросхемы.

Как пример возьмём популярную микросхему мониторинга PS223, которая используется в некоторых блоках питания, которые до сих присутствуют на рынке. Эта микросхема имеет следующие точки срабатывания для режимов OVP и UVP:

Другие микросхемы предоставляют другой набор точек срабатывания.

И ещё раз напоминаем вам, насколько далеко от нормальных значений напряжения обычно сконфигурированы OVP и UVP. Для того, чтобы они сработали, блок питания должен оказаться в весьма сложной ситуации. На практике, дешёвые БП, не имеющие кроме OVP/UVP других типов защиты, выходят из строя раньше, чем срабатывает OVP/UVP.

Что такое полумодульный источник питания?

Как, возможно, вы могли догадаться по названию, полумодульный блок питания имеет как отключаемые, так и неотключаемые кабели. Полумодульные источники питания имеют основные кабели, такие как 24-контактный, 8-контактный и кабель PCIe, все они подключены к одной плате. Наряду со специальными кабелями, кабели SATA и иногда дополнительный кабель PCIe являются модульными опциями.

Полумодульный блок питания можно рассматривать как гибридный источник питания со смесью атрибутов немодульных и полностью модульных блоков питания.

Существуют различные типы полумодульных источников питания:

  • 24-контактный подключен, а PCIe, 8-контактный и другие кабели имеют модульную форму.
  • 24-контактный и PCIe поставляются прикрепленными, а все остальные – модульными.
  • 24-контактный и 8-контактный поставляются подключенными, а PCIe и другие кабели – модульными.

Полумодульные блоки питания – отличный способ сэкономить деньги на вашей новой сборке. С этими полумодульными блоками питания вам не нужно слишком много идти на компромисс с неиспользуемыми кабелями, так как вы будете подключать большинство важных предварительно подключенных кабелей. Стоит отметить, что вы не можете использовать полностью оплетенные кабели с полумодульным блоком питания, поэтому имейте это в виду, если вы планируете приобрести кабельные моды.

В этой категории мы выбрали Corsair CX750M:

Блок питания Corsair CX750M представляет собой надежный блок питания в полумодульной категории. Качество сборки Corsair не только является одним из лучших, но также используется многими энтузиастами и профессиональными сборщиками. Поскольку это полумодульный блок, воздушный поток, как правило, лучше, а внутри корпуса меньше кабелей.

На материнской плате 8-контактный разъем питания, а на блоке питания только 4-контактный

Это одна из самых распространенных ситуаций, с которыми сталкиваются пользователи. К счастью, 4-контактный разъем питания совместим с 8-контактным разъемом. И это вполне работоспособное решение

Однако важно учитывать то, какой процессор вы будете запитывать 4-контактным кабелем питания и будет ли он разгоняться

Если у вас бюджетный или энергоэффективный процессор, чье потребление не превышает 95–110 ватт, можете спокойно запитывать его 4-контактным кабелем питания. Почему рекомендуются такие низкие показатели мощности процессора? Потому, что блок питания, не имеющий 8-контактного кабеля питания — это скорее всего бюджетное решение, где могли сэкономить также и на толщине проводов и на качестве разъемов.

Очень важный момент — будет ли разгоняться процессор на материнской плате, запитанной 4-контактным кабелем питания. Тут все очень индивидуально и зависит от типа процессора, напряжения его питания и частоты, на которую он будет разгоняться. Например, Pentium G3258 легко уложится в 100 ватт потребления при приличном разгоне, а Ryzen 5 2600 может перевалить отметку в 120 ватт даже при случайной активации авторазгона в материнской плате.

Если вы занимаетесь разгоном, не экономьте на блоке питания.

Принцип работы

Принцип работы такого устройства относительно прост: через первичную обмотку трансформатор принимает на себя напряжение сети. Затем с помощью выпрямителя переменный разнонаправленный ток преобразовывается в постоянный и однонаправленный. При этом может использоваться разные выпрямители: одно- или двухполупериодный. В любом случае применяются диодные мосты, которые состоят из:

  1. Двух диодов – в первом типе.
  2. Четырех диодов – во втором типе.

Применение двух элементов в выпрямителе характерно для БК с удвоенным напряжением либо в трехфазных устройствах.

Сетевой фильтр в устройстве БП компьютера – это обычный конденсатор с большой емкостью. Он сглаживает пульсации тока, из-за чего на комплектующие подается относительно чистый и равномерный ток.

Также вместо обычных трансформаторов внутри таких блоков могут использоваться автоматические устройства.

Что это такое

Упрощённо трансформаторный БП можно представить в виде схемы, состоящей из собственно трансформатора, выпрямителя, фильтра для сглаживания параметров выходного напряжения и стабилизатора. Такие устройства обладают достаточно простой схемотехникой, недорогие и обеспечивают низкий уровень помех выходного сигнала.

Но у них есть серьёзные конструктивные недостатки – большой вес и невысокий КПД. Значительная часть энергии преобразовывается в тепловую, поэтому проблема перегрева для таких устройств, особенно мощных – одна из самых актуальных.

Принцип работы импульсных БП для начинающих тоже можно объяснить довольно просто: он также основан на использовании трансформатора, однако работает он на очень больших частотах, порядка 1-100 КГц и обладает гораздо меньшими габаритами и массой. Это, в свою очередь, делает задачу отвода тепла легко выполнимой. Функция фильтрации/стабилизации выходного напряжения упрощается, поскольку для этой задачи используются конденсаторы малой ёмкости.

Но и у инверторных оков питания имеются недостатки – сложная схемотехника, чувствительность к электромагнитным помехам. Что касается стоимости, то она вполне сравнима с трансформаторными устройствами.

Примечания

  1. для соответствия требованиям законодательства стран по электромагнитным излучениям, в России — требованиям СанПиН 2.2.4.1191—03 2.2.4.1191-03.htm «Электромагнитные поля в производственных условиях, на рабочих местах. Санитарно-эпидемиологические правила и нормативы»
  2. Б.Ю. Семенов. Силовая электроника: от простого к сложному. — М.: СОЛОМОН-Пресс, 2005. — 415 с. — (Библиотека инженера).
  3. 12 Подробно описана в спецификации «Serial ATA: High Speed Serialized AT Attachment», раздел 6.3 «Cables and connector specification»
  4. SFX12V Power Supply Design Guide v3.1. March 2005 (англ.)
  5. +5 VSB (англ. standby — дежурный режим), а также сокращение до буквSB , в названии, касаются использования линий обеспечения питания в дежурном режиме
  6. ATX Specification Version 2.1. Архивировано 28 августа 2011 года.
  7. Модульный блок питания Cooler Master Silent Pro Gold 600W // 3DNews
  8. Taiwan notebook companies support PSU standardization
  9. Системная плата Intel BOXDN2800MT для настольных ПК
  10. Сертификация 80 PLUS для блоков питания // www.nix.ru

Структура и принцип работы

Типовая схема компьютерного блока питания стандарта ATX показана ниже. По своей конструкции это классический БП импульсного типа, основанный на ШИМ-контроллере TL 494. Сигнал к началу работы этого элемента поступает с материнской платы. До формирования управляющего импульса активным остается лишь источник дежурного питания, выдающий напряжение в 5 В.

Выпрямитель и ШИМ-контроллер

Чтобы было проще разобраться с устройством блока питания компьютера и принципом его работы, нужно рассмотреть отдельные структурные элементы. Начать стоит с сетевого выпрямителя.

Основная задача этого блока заключается в преобразовании переменного сетевого электротока в постоянный, который необходим для функционирования ШИМ-контроллера, а также дежурного источника питания. В состав блока входит несколько основных деталей:

  • Предохранитель F1 – необходим для защиты БП от перегрузки.
  • Терморезистор – он расположен в магистрали «нейтраль» и призван снижать скачки электротока, возникающие в момент включения ПК.
  • Фильтр помех – в его состав входят дроссели L1 и L2, конденсаторы C1- C4, а также Tr1, имеющие встречную обмотку. Этот фильтр позволяет подавлять помехи, неизбежно возникающие при работе импульсного БП, могут негативно воздействовать на работу теле- и радиоаппаратуры.
  • Диодный мостик – находится сразу за фильтром помех и позволяет преобразовать переменный электроток в постоянный пульсирующий. Для сглаживания пульсаций предусмотрен емкостно-индукционный фильтр.

На выходе из сетевого выпрямителя напряжение присутствует до того момента, пока БП не будет отключен от розетки. При этом ток поступает на дежурный источник питания и ШИМ-контроллер. Именно первый структурный элемент схемы представлен на рисунке.


​Он представляет собой преобразователь малой мощности импульсного типа. В его основе лежит транзистор Т11, задачей которого является генерация питающих импульсов для микросхемы 7805.

Основой любого преобразователя импульсного типа является ШИМ-контроллер. В рассматриваемом примере он реализован с помощью микросхемы TL 494. Основная задача модуля ШИМ (широтно-импульсная модуляция) заключается в изменении длительности импульсов напряжении при сохранении их амплитуды и частоты. Полученное выходное напряжение на импульсном преобразователе стабилизируется с помощью настройки длительности импульсов, которые генерирует ШИМ-контроллер.

Выходные каскады преобразователя

Именно на этот элемент конструкции ложится основная нагрузка. Это приводит к серьезному нагреву коммутирующих транзисторов Т2 и Т4. По этой причине они установлены на массивные радиаторы. Однако пассивное охлаждение не всегда позволяет справляться с сильным тепловыделением, все БП оснащены кулером. Схема выходного каскада изображена на рисунке.

Перед выходным каскадом расположена цепь включения БП, основанная на транзисторе Т9. При пуске блока питания на этот элемент конструкции напряжение в 5 В подается через сопротивление R 8. Это происходит после формирования сигнала к пуску ПК на материнской плате. Если возникли проблемы с работой источника дежурного питания, то БП может после пуска сразу отключиться.

Распиновка главного коннектора

Сначала БП форм-фактора ATX для соединения с системной платой оснащались разъемом на 20 пин. Однако совершенствование вычислительной техники привело к необходимости использовать дополнительно еще 4 контакта. Современные блоки питания могут оснащаться 24-пиновым разъемом в одном корпусе или иметь 20+4 пин. Все контакты коннекторов стандартизованы и вот основные из них:

  • +3,3 В – питание материнской платы и центрального процессора.
  • +5 В – напряжение необходимо для работы некоторых узлов системной платы, винчестеров и внешних устройств, подключенных к портам USB.
  • +12 В – управляемое напряжение, используемое HDD и кулерами.
  • -5 В – начиная с версии ATX 1.3 не используется.
  • -12 В – сегодня применяется крайне редко.
  • Ground – масса.

Алгоритм выбора блока питания

Пришла пора подвести итоги всего материала и составить простой, но эффективный алгоритм по подбору БП под игровой компьютер. Можете использовать его как памятку, добавив эту страницу в закладки своего браузера.

  • Определяем форм-фактор (скорее всего ATX);
  • Выбираем производителя («нонейм» не берем!);
  • Проверяем, чтобы на блоке питания был 24-штырьковый разъем для материнской платы;
  • Определяем оптимальную мощность (обычно 600-700 Вт);
  • Обязательно проверяем мощность по линии 12 Вольт;
  • Проверяем размер вентилятора (желательно брать от 120 мм);
  • Смотрим, сколько денег в кошельке, и выбираем класс 80 PLUS (Bronze, Silver, Gold — лучшее соотношение цены к качеству);
  • Не забываем про PFC (разница небольшая, но пассивное все же лучше);
  • На всякий случай смотрим компоновку проводов и разъемов.
  • Как узнать, какой у меня компьютер (процессор, видеокарта, оперативная память)? Инструкция для новичков

Для чего нужен блок питания?

Блок питания представляет собой источник питания, который снабжает энергией все компоненты, входящие в состав системного блока. Именно от БП во многом зависит, насколько долговечной и стабильной при использовании будет система. Помимо этого, благодаря ему:

  • исключаются потери информации с компьютера;
  • предотвращаются скачки энергии.

Особенность системного блока заключается в том, что напрямую от розетки его компоненты не могут получать энергию. Именно поэтому в составе каждого ПК используется источник питания. Его устанавливают сразу по нескольким причинам:

  • в электрической сети преобладает переменный ток, а компонентам компьютера необходим постоянный. Преобразование тока обеспечивает БП. Это устройство меняет переменный ток на постоянный, при этом компоненты «машины» получают энергию с нужным напряжением;
  • для каждого устройства, входящего в состав компьютера, требуется напряжение определенной величины. Здесь снова помогает БП, который выдает ток необходимой величины на видеокарту, процессор и другие компоненты компьютера.

Предлагаем Вашему вниманию познавательную статью о матрице IPS в современных ЖК мониторах.

Принцип работы импульсного блока питания

В основе работы инвертора лежит выпрямление первичного напряжения и дальнейшее его преобразование в последовательность импульсов высокой частоты. Этим он отличается от обычного трансформатора. Выходное напряжение блока служит для формирования сигнала отрицательной обратной связи, что позволяет регулировать параметры импульсов. Управляя шириной импульсов, легко организовать стабилизацию и регулировку выходных параметров, напряжения или тока. То есть это может быть как стабилизатор напряжения, так и стабилизатор тока.

Количество и полярность выходных значений может быть самым различным в зависимости от того, как работает импульсный блок питания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector